Supplementary Material for Binarized Convolutional Landmark Localizers for Human Pose Estimation and Face Alignment with Limited Resources

نویسندگان

  • Adrian Bulat
  • Georgios Tzimiropoulos
چکیده

This section provides additional details for some of the ablation studies reported in Section 6. Pooling type. In the context of binary networks, and because the output is restricted to 1 and -1, max-pooling might result in outputs full of 1s only. To limit this effect, we placed the activation function before the convolutional layers as proposed in [5, 9]. Additionally, we opted to replace max-pooling with average pooling. However, this leads to slightly worse results (see Table 1). In practice, we found that the use of blocks with pre-activation suffices and that the ratio of 1 and -1 is close to 50% even after max-pooling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NosePose: a competitive, landmark-free methodology for head pose estimation in the wild

We perform head pose estimation solely based on the nose region as input, extracted from 2D images in unconstrained environments. Such information is useful for many face analysis applications, such as recognition, reconstruction, alignment, tracking and expression recognition. Using the nose region has advantages over using the whole face; not only it is less likely to be occluded by acesssori...

متن کامل

Fine-Grained Head Pose Estimation Without Keypoints

Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is ...

متن کامل

Towards Arbitrary-View Face Alignment by Recommendation Trees

Learning to simultaneously handle face alignment of arbitrary views, e.g. frontal and profile views, appears to be more challenging than we thought. The difficulties lay in i) accommodating the complex appearance-shape relations exhibited in different views, and ii) encompassing the varying landmark point sets due to self-occlusion and different landmark protocols. Most existing studies approac...

متن کامل

Harvesting Multiple Views for Marker-less 3D Human Pose Annotations Supplementary Material

In this supplementary, we provide material that could not be included in the main manuscript due to space constraints. Section 1 provides additional quantitative evaluation of our approach for multi-view pose estimation, and comparison with the state-of-the-art for HumanEva-I [4]. Section 2 provides full results of the multi-view optimization on Human3.6M after refining the generic 2D pose Conv...

متن کامل

HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition

We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, Hyperface, fuses the intermediate layers of a deep CNN using a separate CNN and trains multi-task loss on the fused features. It exploits the synergy among the tasks which boosts up their individual pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017